National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Snowmelt runoff during rain-on-snow events in the Ptačí brook basin calculated using stable water isotopes
Valdhansová, Klára ; Jeníček, Michal (advisor) ; Šípek, Václav (referee)
Rain-on-snow events represent one of the basic mechanisms causing floods. Rain falling on the snow cover causes enhanced melting and the resulting runoff often exceeds the runoff caused by rain. During the winter seasons 2018 and 2019, water samples from the stream, snowpack and precipitation were repeatedly taken in the the Ptačí Brook catchment in the Šumava mountains, and the concentrations of 2 H and 18 O were measured in the laboratory. Based on the observed isotope ratios 18 O/16 O and 2 H/1 H in combination with other variables measured in the catchment, the two ROS events from 2019 were reconstructed. The ratio of heavy isotopes increased in the snowpack due to ROS events. Using the end member mixing equation, a hydrograph separation was performed for both investigated events. For the first event, it was not possible to clearly separate groundwater from rainfall, and thus the range of snow in the total runoff was determined by its separation from rainfall and subsequent separation from groundwater. The second event examined was separated directly into three components: rainfall, groundwater and snow. According to the analyses, the total runoff during ROS events in both cases was mostly formed by event water (a combination of rainfall and melt water). The melting water from the snow cover...
Effect of snowpack on runoff generation during rain on snow event.
Juras, Roman ; Máca, Petr (advisor) ; Ladislav , Ladislav (referee)
During a winter season, when snow covers the watershed, the frequency of rain-on-snow (ROS) events is still raising. ROS can cause severe natural hazards like floods or wet avalanches. Prediction of ROS effects is linked to better understanding of snowpack runoff dynamics and its composition. Deploying rainfall simulation together with hydrological tracers was tested as a convenient tool for this purpose. Overall 18 sprinkling experiments were conducted on snow featuring different initial conditions in mountainous regions over middle and western Europe. Dye tracer brilliant blue (FCF) was used for flow regime determination, because it enables to visualise preferential paths and layers interface. Snowpack runoff composition was assessed by hydrograph separation method, which provided appropriate results with acceptable uncertainty. It was not possible to use concurrently these two techniques because of technical reasons, however it would extend our gained knowledge. Snowmelt water amount in the snowpack runoff was estimated by energy balance (EB) equation, which is very efficient but quality inputs demanding. This was also the reason, why EB was deployed within only single experiment. Timing of snowpack runoff onset decrease mainly with the rain intensity. Initial snowpack properties like bulk density or wetness are less important for time of runoff generation compared to the rain intensity. On the other het when same rain intensity was applied, non-ripe snowpack featuring less bulk density created runoff faster than the ripe snowpack featuring higher bulk density. Snowpack runoff magnitude mainly depends on the snowpack initial saturation. Ripe snowpack with higher saturation enabled to generate higher cumulative runoff where contributed by max 50 %. In contrary, rainwater travelled through the non-ripe snowpack relatively fast and contributed runoff by approx. 80 %. Runoff prediction was tested by deploying Richards equation included in SNOWPACK model. The model was modified using a dual-domain approach to better simulate snowpack runoff under preferential flow conditions. Presented approach demonstrated an improvement in all simulated aspects compared to the more traditional method when only matrix flow is considered.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.